
2006-07 form•Z Joint Study Journal130

How Should Digital Media
be Taught?

by Kostas Terzidis

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS

Note: The following text is based on an interview conducted
on 04.14.07 by Junfeng (Jeff) Ding, Senior Designer at
Hillier International Architecture, NY and Xiaojun Bu,
MArch student at Graduate School of Design (GSD),
Harvard University.

Contrary to common belief, computation is not really a goal,
but rather the process of arriving at a potential goal. There
is a distinction between the visual appearance versus the
essence of something. For example, consider the case of
a curve. A curve, of course, is a geometrical object that
has a visual manifestation, i.e. it looks round, elastic, and
soft. But that is just a phenomenon that appeals to our
eyes. Behind a curve lies also the mathematical process
that defi nes, describes, and controls it. That has a certain
computational complexity that allows the computer to
respond to its real time behavior, so that it will look curvy
or fl exible to your eyes. So the complexity of the curve
is something hidden in the computational process. Yet,
there is something even deeper than that. That is, the
actual complexity that even though it is based on logical
arguments, its quantity and articulation is so extreme that
it goes beyond one’s ability to understand it. Perhaps
because humans have a limitation by nature, they just
don’t understand immediately the complexities involved.
Even if many scientists are gathered, still each one of
them is limited and so is the whole group. Even if it is split
into smaller pieces it still doesn’t get understood.

Occasionally, we comfort ourselves thinking that even
though some problems are extremely complicated, they
are so only in the sense that it would take us a long time to
solve. But then again how can that claim be true when we
do not understand the problem in the fi rst place; and who
is going to negate that claim when we humans are the only
judges. So the complexity referred to here is not something
remote or abstract but can be found amply in everyday

life; for instance, our own bodies are complex structures
that we do not know how they work exactly; and yet we
are them. Nature is complex, but it can be argued that
its processes happen in a certain computational way. The
structures of cells, organs, organisms, or even chemical
or social phenomena are dominated by processes the
mechanics of which we do not understand. There are
levels of complexity that need to be understood through
some sort of a methodology. One such methodology is
computation. In that sense, computation is actually a
means to reach a goal, not the goal itself. So it appears
possible that computation can be used as a complement
to one’s own inability to fathom something that is beyond
one’s understanding, not to do things one already knows.

In my courses, I am trying to sensitize the students about
the possibility that there is more than just application driven
processes, that is, processes where somebody already
provides us with the tools and we just use them. That is
to say that, when one uses form•Z, Rhino, 3D MAX, or
whatever, in reality one is replicating a set of methods that
somebody already has done in advanced. In other words,
somebody has already assumed that you are going to
make a line, and has customized the line command in a
way that it is convenient to you. And that convenience I
am afraid you pay later on because you’re in a way driven
to make a decision that you would not have necessarily
made, had the same design be done by paper, or more
importantly, had it been done by a truly computational
process, such as scripting or programming.

The problem is that that decision was not yours. Perhaps
an easy analogy is the paradigm of a pool, i.e., one is
given the ability to swim, but in a small pool. And then one
is able to write one’s own scripts and gets more freedom,
perhaps now swimming in a lake. And later on one can
go on to the ocean. And then one is faced with infi nite

131How Should Digital Media be Taught?

min = 0.8
max = 2.8
(unit: inch)

min = 1.2
max = 2.5

min = 1.4
max = 2.3

min = 1.6
max = 2.2

min = 1.7
max = 2.0

Figure 1: Cellular automata studies by Zhou Xu, MArch II. An array of circles whose radii are based upon the RGB values of pixels
from Marcel Duchamp’s painting: “nude descending a staircase.” Then each circle is judged twice by its eight neighbors’ average
radius value; if it is less than a designated minimal value, the area can be regarded too light, hence the target circle is replaced by a
larger one, reversely, if the area appears to be too dark, then a smaller circle would be the replacement.

freedom. Because there is no constraint on the size of
the pool that one has been placed in, when one thought
that he or she was free, but really was not. I often use the
phrase “form follows software”, in the sense that software
affects the way one thinks. Unfortunately (or fortunately),
different software implicitly enforces one to make stylistic
decisions. In that sense, it is easy to distinguish a
design made in form•Z, because it is possible to discern
certain characteristics that are stylistically provided by
form•Z, which means one is actually abiding, almost
as a mannerism, to that particular software that actually
in a way manipulates the way one thinks, decides, and
designs.

In my GSD classes, we are trying to have the students
think in the reverse way. It is a fairly complicated process,
because for them it is completely unexpected. Yet it is
extremely useful because it becomes the fi rst time that
they get acquainted with the computer not in a friendly
customizable spoon-fed fashion, as in “do this for me.” But
it is more along the lines of “I need to fi rst fi nd out the logical
and mathematical principles, the computational elements,
and the relationships to articulate them into things that
could be architectural.” As in swimming in the ocean, at
the end they cultivate their ability to do the things that
they really want. Of course, it is hard and it needs lots of

work, but I think the results are truly exceptional because
they can design not by nursed copying or imitating but by
creating; in the true sense of the word.

Any criticism of the current state of how computers
are being used or taught is perhaps premature since
my approach is too early to conclude. However, these
classes at the GSD are an indirect criticism or comparison
to other schools and practices, because as mentioned
earlier, when one uses ready-made software, such as
in modeling applications, they do things easily and fast,
and so one tends to be seduced, drawn into, and follow
because it is easy, fascinating, and produces results fast
and impressively. So faculty and students like it, because
it gets things done faster and more effi ciently. Yet, at
the end, while they may think that they are designing
computationally, in reality they are not. They are not
really using their minds, logically speaking. They are
not challenging the discrete mathematical entities by
manipulating them through logical operations which is
what computation is. They are just moving the mouse on
the screen, by following a preset process being given to
them by the programmers that sell these applications.

It is actually an economic rather than an intellectual
relationship. For the price of software there is an

2006-07 form•Z Joint Study Journal132

Figure 2: Fractal studies by Kei Takeuchi, MArch I. Each curve segment of a base shape is replaced by a curve called generator.
The results are shown above for multiple replacements.

original generator base figureoriginal generator base figureoriginal generator base figure

investment return. But in reality they are paying the price
of “eye candy” that they get through this kind of process,
which I refer to it as computerization. In other words, this
relationship reveals that computation is not about the
value of a computer and its software, but rather about
a mind that thinks using arithmetic and logic as if it is a
computer. Of course, when one uses form•Z, there is
surely a computational process somewhere, but it is not
there because of the computer itself. A computational
process does not need a computer necessarily. Of course,
computers, as data processing machines will help, but it
isn’t solely the computer itself. It is a logical and arithmetic
device, which has nothing to do with the computer the way
it is comprehended today. It is not a little gray box with a
pixel screen. Rather, it is a fl ow of immaterial information.
There is a distinction. And the problem is that a lot of

people don’t know it. A lot of people think of the computer
itself, as if somewhere inside the computer, something
magical is happening. Instead, it is in one’s mind. You are
the one who makes it. So, in a way, we should be doing
design the right way, and not be affected out by software
companies. Although I have nothing against them--after all
they are doing their job--, and so should we. We can still
make parti-design, we can still make diagrams with truly
computational methods using numbers and relationships,
and then use the computerized techniques for rendering,
presentations, etc., which I think they are very good
for those purposes. But I don’t believe that the pixel-
perceived image that one makes moving the mouse is
also computational or algorithmic; because it is not. There
is no computational process in the way it was designed.
That is my distinction.

Kostas Terzidis is an Associate Professor at the Harvard Graduate School of Design. His current GSD
courses are Kinetic Architecture, Algorithmic Architecture, Digital Media, Advanced Studies in Architectural
Computing, and Design Research Methods. He holds a PhD in Architecture from the University of Michigan
(1994), a Masters of Architecture from Ohio State University (1989) and a Diploma of Engineering from the
Aristotelion University in Greece (1986). He is a registered architect in Europe where he has designed and
built several commercial and residential buildings. His most recent work is in the development of theories and
techniques for algorithmic architecture. His book Expressive Form: A Conceptual Approach to Computational
Design published by London-based Spon Press (2003) offers a unique perspective on the use of computation
as it relates to aesthetics, specifi cally in architecture and design. His latest book Algorithmic Architecture,
(Architectural Press/Elsevier, 2006), provides an ontological investigation into the terms, concepts, and
processes of algorithmic architecture and provides a theoretical framework for design implementations.

