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Generally, a fractal most often referred to as “a rough 
shape that can be subdivided in parts, each of which is (at 
least approximately) a reduced-size copy of the whole.” 
The father of fractal geometry Benoît Mandelbrot formu-
lated this term in 1975.  A fractal has a complicated shape. 
Certain features characterize a graphical representation 
of the fractal by mathematical equation: it is self-similar, 
has fi ne structure, and is very diffi cult to describe it using 
Euclidian geometric language. It might seem like a nice 
mathematic abstraction, but fractal geometry, as we be-
lieve – is the foundation of everything that exists.

The theory of evolution, which emphasizes on chaos, nat-
ural selection, and gene, has come to dominate the world 
scene. The universe described as an intricately complex 
system emerged from some preset condition a long time 
ago and differed greatly over the course of its history. The 
diverse life forms are all a part of the evolved complexity, 
one that can be described using mathematics.

Quoting Ian Malcolm from Michael Crichton’s “Jurassic 
Park”, “Fractals are everything!” – meaning that all of the 
creation, from macrocosmic scale down to quarks follows 
the same rule of organization. A rock resembles larger 
pieces of rock in its structure and form, and ultimately it 
looks pretty much like the mountain that it is forming.

The reason for starting this project was our interest in frac-
tal geometry as well as a desire to produce a program that 
would generate 3D fractal shapes for creation of convert-
ible models. As to our knowledge there is limited number 
of software that draws fractals in 3D space, where you 
can “touch and feel” or explore them from different view-
points.

Mathematicians have been generating 3D fractals for a 
long time. Just a few programs to mention are Quat 1.2[1] 

and TetraBot Explorer[2] – fi rst thing, you are likely to fi nd 
upon typing “3D fractals” in any internet search engine. 
These applications serve as a good medium for gener-
ating 2D images of 3D fractals. The problem is that you 
cannot get a complete 3D fractal, rotate it, zoom into it or 
use it as a separate model for your design project. There 
are plugins and applications for CAD software that assist 
in drawing fractal trees and mountains. However, there 
is practically no software that generates real-life fractals, 
which are described by algebraic methods rather than 
geometric.

There is a fi ne difference between 2D and a 3D fractal. 
Ripples on the water, or patterns formed by the wind on 
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Figure 1: FractalZ application running simultaneously with 
form•Z
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the sand, or the fabric of a leaf are all examples of 2D frac-
tals when viewed from the appropriate viewpoint. Some 
plants, trees and the above-mentioned rocks – all are ex-
amples of 3D fractals. Their complex structure is not vis-
ible at fi rst glance; it exists nevertheless. Living organisms 
belong to this second group. Although some of the main 
features, like repetition of separate parts in smaller scale 
are not present, human beings display symmetry and fi ne 
structure of their organs. 

At the beginning, an application was written that performs 
the required calculations (Figure 1). For this specifi c 
purpose, quaternion numbers were used. The fractals 
defi ned in programs like Quat or FractIt were generated 
likewise. It is not the only way to generate fractals. Geo-
metric methods can be used as well, but – as it was al-
ready mentioned before – this is not the case considered 
in this study (Figure 2). 

The tale of quaternion numbers is an amazing story in 
itself – one that deserves a separate topic. In mathemat-
ics, quaternions are a non-cumulative extension of com-
plex numbers. They were fi rst discovered and described 
in the middle of the 19th century by Sir William Rowan 
Hamilton[3], a mathematician and physicist from Ireland.  
Hamilton was searching for a way to expand complex 
numbers, which represent points on a plane, into a higher 
dimension. He failed for three dimensions, but succeeded 
with four – thus fi nding the quaternion. Quaternion was 
met coldly in the mathematicians world and were quick-
ly proven to be pathologic because they disobeyed the 
commutative law ab=ba, and therefore were completely 
replaced by vectors. Quaternion resurfaced in areas of 
3D object orientation and geometric analysis during the 
computer age, fi nding their application in the computation 
of the objects of higher order. 

Quaternion number consists of four parts – “1”, “i”, “j”, and 
“k”[4]. The resulting fi gure of the computational analysis is a 
4-dimentional shape that can later be projected. Quat and 

similar applications do just that – they draw a projection 
of the resulting shape on a 2D plane. We went one-step 
ahead or in other words, an attempt to project or model 
a 4D quaternion equation in 3D space was performed in 
this study. 

The calculation of the shape begins with an equation:    x
n+1

 
= x

n
2- c. In this equation x

0
 is the starting value, which is the 

point that has to be calculated; n assigns index to x (n=0, 
1, 2, 3, ...). The c value is the predefi ned quaternion that 
defi nes the shape of the resulting fractal. It is evident that 
the sequence of all x

n
 defi ned by the iteration formula, some-

times referred to as “orbit”, can have three resulting values:

 1)  the sequence converges toward a fi xed value 
      (e.g. zero);
 2)  oscillates periodically between some value;
 3)  approaches infi nity.

The resulting object is the amount of all points (numbers) 
x

0
, for which the sequence defi ned by the formula does 

not approach infi nity or zero – in other words – which 
does not follow the scheme 1) or 3). This formulation is 
not complete because the computer is not capable of car-
rying out calculations up to infi nity to see if the sequence 
is convergent. A maxiter value bypasses the limitation of 
our material world. After a certain amount of iterations, 
the calculation was interrupted. To verify, whether the 
sequence approaches infi nity or not, the value bailout 
was introduced. This term comes from FractIt and Quat 
applications. If the value is exceeded, the computer as-
sumes that the sequence goes toward infi nity. Therefore, 
the calculation is the amount of all point-numbers x

0
, for 

which the sequence defi ned by the iteration formula of the 
x

n
 did not exceed the value bailout after at most maxiter 

iterations.

The output was a little bit trickier. While the basics of frac-
tal calculation are well known for a long time, handling the 
resulting data is far more diffi cult. The programming was 
simplifi ed by the fact that it was not necessary to write the 
code responsible for the graphical output. The data of the 
generated points were fed directly into form•Z application. 
This involved writing a keyboard control module using a 
Delphi compiler. No changes were made in form•Z soft-
ware. FractalZ is the name of the developed application 
that ran into separate window, and feeding point coordi-
nates into active form•Z application. Thus, two programs 
– form•Z and FractalZ – ran simultaneously in some sort 
resembling a chalkboard that records a single point in 3D 
space for every coordinate FractalZ calculated. 

At this point, we encountered serious problems. One 
thing to note is the speed with which the calculations or 
the input process was carried out. Using the method de-
scribed above, it takes 200 milliseconds for form•Z to 
draw a single point and some 15 to 20 minutes to gener-

Figure 2: Fractal shape rendered by form•Z
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Figure 5: Artistic rendering of the mesh model.

Figure 4: Mesh-cloud converted from point-cloud.

ate a 3,000-point fractal model. Another thing to mention 
is the amount of data that form•Z was able to handle. 
With shapes consisting from 20,000 and more points, ap-
plication and computer crashes became more frequent. In 
fact, it takes several million points to generate a smooth 
fractal shape like seen in Quat. Our models, consisting 
from several thousand points, do not look much like frac-
tals. Microscopic details very often are hidden at the lower 
levels.

It should be explained in what way 2D fractals are dif-
ferent from 3D and why handling them is more diffi cult.  
When the point is projected on a 2D plane, it is possible 
to control the size of the resulting image by lowering the 
resolution and adjusting its dimensions. That way, while 
some fi ne fractal details will disappear, the overall picture 
will remain. In case we want to go deeper, it is possible to 
zoom into a specifi c part and calculate it. The same can-
not be done easily with the resulting points of 3D fractal 
shapes. They consist of a collection of individual points, a 
point-cloud that need to be visualized somehow. One way 
is to replace each individual point with a 3D shape (an 
analogy is voxel rendering), or drape the shape, creating 
a NURBS surface. To simplify the work with the result-
ing model, data fi ltering was performed. Excluded from 
the process of calculation were all those points that were 
found “inside” the model and could not be seen from out-
side, thus leaving only the outer layer. This approach con-
siderably reduced the resulting model size and facilitated 
its easier manipulation.

Rendering of the object was fi nalized using point-cloud 
processing software Points2Polys from Paraforms (Fig-
ure 3) and Point Cloud (v.1.0) from Floating Point Solu-
tion. These applications connected the adjoining points, 
forming poly-meshes from the input data material, while 
Point Cloud is also capable of draping a point-cloud with 
a 2D plane. To achieve this it was necessary to export 

form•Z model into *.obj fi le format. Further visualization 
was complicated. It was not possible to reach the level of 
detail found in similar applications, for the simplest reason 
that our hardware and software was not adequate to han-
dle the complex models consisting of several thousand 
points. To truly appreciate the 3D fractals in all their glory it 
would require many more iterations to be carried out on a 
fi ner scale with the resulting models much more complex, 
and much “heavier” (Figures 4-6). Similarly to a man in a 
dark cavern poking at walls with a stick. we were able to 
reproduce a part of that hidden, complex topology, while 
most of the nooks and crannies remain hidden. 

Figure 3: Fractal point-cloud in Points2Polys application.
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The practical value of this work, as to our knowledge, is in 
its similarity with the study of the modern theoretical phys-
ics[5]. On the forefront of contemporary cosmology is the 
idea that our universe is just one of the many universes 
that forms a far bigger cluster called “the multiverse”, or 
“megaverse” as some scientists prefer to call it. String the-
ory describes particles as vibrating strings of energy – be-
cause strings vibrate at different levels of intensity – there 
exist varieties of particles in our universe. The expansion 
of the universe is fueled by the so-called “dark energy”, an 
energy that represents the cosmologic constant ( ).  Now, 
the value of cosmologic constant is very important for our 
existence. If its value had been different during and right 
after the Big Bang, our universe would have ended up in a 
completely different state. If the cosmologic constant were 
lower than its present value, all the matter following the 
gravitational pull would collapse onto itself. On the other 
hand, if its value would have been greater, all of the matter 
would be blown apart, the expansion of space would oc-
cur so fast that galaxies and stars would have no chance 
of forming, and likewise, there would be no time for higher 
intelligence to evolve.

While calculating the 3D shape generated by the equa-
tion, FractalZ application was looking for specifi c values 
that would produce meaningful results. In case the results 
of the equation converged to zero or infi nity, there would 
be nothing. We did a listing of all the valid points on the 
surface of that 4D shape. 

The same can be applied to cosmology. Cosmologic 
constant, which seems to be so fi ne-tuned to satisfy our 
needs, could be completely different in some other uni-
verse of the multiverse thus making that other places un-
inhabitable. Scientists are busy constructing models of 
multiverse, called “landscape”. Now “landscape” is a dif-
fi cult term. It is not something that exists in reality; rather, 
it is a “map” or the model of possibilities for the “shape” of 
the multiverse. Our universe, with our particular value of 
the cosmologic constant is just one of the many possibili-
ties or points on the landscape. 

What we did in our study was the mapping of the “habit-
able” places on a 4D shape, in the same way as physicists 
today are trying to map the landscape of the multiverse. 
To follow the analogy – cosmologic constant is our x, the 
result of the equation, where c – the quaternion – repre-
sents the four fundamental forces in our universe (grav-
ity, electromagnet force, strong and weak nuclear forces). 
Now, this was not an arbitrary choice: since each force has 
messenger particles (gravitons, photons, gluons, W and Z 
bosons) that can be described by string theory as being 
the same vibrating string, it is possible to unify all of these 
forces into one quaternion number, assuming that they 
are permanent in their affect on the universe. That way, 
the topology of the landscape, where the universal con-
stant changes and the four fundamental forces are locked 
into a hyper-complex number, the only thing missing is 
the equation itself, the formula that governs the shape of 
the landscape, and consequently – the multiverse. The 
four forces do not even have to have the same value; they 
can change as well, affecting the value of the cosmologic 
constant. It might seem a bit far-fetched, but linking these 
two principles might produce a coherent picture. 

A trivia, a curio, bric-a-brac of creative computing are 
the words we would use to describe this study. The main 
value comes in the form of expansion of conscience. We 
achieved our goal – some very attractive visual master-
pieces are presented for your evaluation (Figures 7-9). No 
conclusions have been formulated so far and the work on 
the study is continuing. Too many things are still not clari-
fi ed yet. For some reason, certain quaternion values bring 
no result at all, while others blossom in various forms and 
shapes emerging from minor changes. New quaternion 
values are tested and new methods of graphical repre-
sentation are under development.

A universe is an open-ended system. It exists in itself and 
has no perceivable end – neither in time nor in space. 
Mathematics, being an abstract plane of symbols and re-
lations, shares that same quality – there is no end to it. 
Likewise, we would like to keep our project going on rath-
er than placing a full stop at the end of this sentence…
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Figure 6: Artistic rendering of the mesh model.
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Figure 9: Rendering of point-clouds after processing by Point Cloud 1.0.

Figure 7: Rendering of point-clouds after 
processing by Point Cloud 1.0.

Figure 8: Rendering of point-clouds 
after processing by Point Cloud 1.0.
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