
2006-07 form•Z Joint Study Journal54

Generally, a fractal most often referred to as “a rough
shape that can be subdivided in parts, each of which is (at
least approximately) a reduced-size copy of the whole.”
The father of fractal geometry Benoît Mandelbrot formu-
lated this term in 1975. A fractal has a complicated shape.
Certain features characterize a graphical representation
of the fractal by mathematical equation: it is self-similar,
has fi ne structure, and is very diffi cult to describe it using
Euclidian geometric language. It might seem like a nice
mathematic abstraction, but fractal geometry, as we be-
lieve – is the foundation of everything that exists.

The theory of evolution, which emphasizes on chaos, nat-
ural selection, and gene, has come to dominate the world
scene. The universe described as an intricately complex
system emerged from some preset condition a long time
ago and differed greatly over the course of its history. The
diverse life forms are all a part of the evolved complexity,
one that can be described using mathematics.

Quoting Ian Malcolm from Michael Crichton’s “Jurassic
Park”, “Fractals are everything!” – meaning that all of the
creation, from macrocosmic scale down to quarks follows
the same rule of organization. A rock resembles larger
pieces of rock in its structure and form, and ultimately it
looks pretty much like the mountain that it is forming.

The reason for starting this project was our interest in frac-
tal geometry as well as a desire to produce a program that
would generate 3D fractal shapes for creation of convert-
ible models. As to our knowledge there is limited number
of software that draws fractals in 3D space, where you
can “touch and feel” or explore them from different view-
points.

Mathematicians have been generating 3D fractals for a
long time. Just a few programs to mention are Quat 1.2[1]

and TetraBot Explorer[2] – fi rst thing, you are likely to fi nd
upon typing “3D fractals” in any internet search engine.
These applications serve as a good medium for gener-
ating 2D images of 3D fractals. The problem is that you
cannot get a complete 3D fractal, rotate it, zoom into it or
use it as a separate model for your design project. There
are plugins and applications for CAD software that assist
in drawing fractal trees and mountains. However, there
is practically no software that generates real-life fractals,
which are described by algebraic methods rather than
geometric.

There is a fi ne difference between 2D and a 3D fractal.
Ripples on the water, or patterns formed by the wind on

by Modris Dobelis
Project by Dmitriy Averyanov and Vladimir Katz

And how the One of Time,
Of Space the Three,
Might in the Chain of
Symbols girdled be.
 William Rowan Hamilton

Figure 1: FractalZ application running simultaneously with
form•Z

Bric-a-brac
of Creative Computing:

Studying Fractal Shapes with form•Z

RIGA TECHNICAL UNIVERSITY
RIGA, LATVIA

55Bric-a-brac of Creative Computing: Studying Fractal Shapes with form•Z

the sand, or the fabric of a leaf are all examples of 2D frac-
tals when viewed from the appropriate viewpoint. Some
plants, trees and the above-mentioned rocks – all are ex-
amples of 3D fractals. Their complex structure is not vis-
ible at fi rst glance; it exists nevertheless. Living organisms
belong to this second group. Although some of the main
features, like repetition of separate parts in smaller scale
are not present, human beings display symmetry and fi ne
structure of their organs.

At the beginning, an application was written that performs
the required calculations (Figure 1). For this specifi c
purpose, quaternion numbers were used. The fractals
defi ned in programs like Quat or FractIt were generated
likewise. It is not the only way to generate fractals. Geo-
metric methods can be used as well, but – as it was al-
ready mentioned before – this is not the case considered
in this study (Figure 2).

The tale of quaternion numbers is an amazing story in
itself – one that deserves a separate topic. In mathemat-
ics, quaternions are a non-cumulative extension of com-
plex numbers. They were fi rst discovered and described
in the middle of the 19th century by Sir William Rowan
Hamilton[3], a mathematician and physicist from Ireland.
Hamilton was searching for a way to expand complex
numbers, which represent points on a plane, into a higher
dimension. He failed for three dimensions, but succeeded
with four – thus fi nding the quaternion. Quaternion was
met coldly in the mathematicians world and were quick-
ly proven to be pathologic because they disobeyed the
commutative law ab=ba, and therefore were completely
replaced by vectors. Quaternion resurfaced in areas of
3D object orientation and geometric analysis during the
computer age, fi nding their application in the computation
of the objects of higher order.

Quaternion number consists of four parts – “1”, “i”, “j”, and
“k”[4]. The resulting fi gure of the computational analysis is a
4-dimentional shape that can later be projected. Quat and

similar applications do just that – they draw a projection
of the resulting shape on a 2D plane. We went one-step
ahead or in other words, an attempt to project or model
a 4D quaternion equation in 3D space was performed in
this study.

The calculation of the shape begins with an equation: x
n+1

= x

n
2- c. In this equation x

0
 is the starting value, which is the

point that has to be calculated; n assigns index to x (n=0,
1, 2, 3, ...). The c value is the predefi ned quaternion that
defi nes the shape of the resulting fractal. It is evident that
the sequence of all x

n
 defi ned by the iteration formula, some-

times referred to as “orbit”, can have three resulting values:

 1) the sequence converges toward a fi xed value
 (e.g. zero);
 2) oscillates periodically between some value;
 3) approaches infi nity.

The resulting object is the amount of all points (numbers)
x

0
, for which the sequence defi ned by the formula does

not approach infi nity or zero – in other words – which
does not follow the scheme 1) or 3). This formulation is
not complete because the computer is not capable of car-
rying out calculations up to infi nity to see if the sequence
is convergent. A maxiter value bypasses the limitation of
our material world. After a certain amount of iterations,
the calculation was interrupted. To verify, whether the
sequence approaches infi nity or not, the value bailout
was introduced. This term comes from FractIt and Quat
applications. If the value is exceeded, the computer as-
sumes that the sequence goes toward infi nity. Therefore,
the calculation is the amount of all point-numbers x

0
, for

which the sequence defi ned by the iteration formula of the
x

n
 did not exceed the value bailout after at most maxiter

iterations.

The output was a little bit trickier. While the basics of frac-
tal calculation are well known for a long time, handling the
resulting data is far more diffi cult. The programming was
simplifi ed by the fact that it was not necessary to write the
code responsible for the graphical output. The data of the
generated points were fed directly into form•Z application.
This involved writing a keyboard control module using a
Delphi compiler. No changes were made in form•Z soft-
ware. FractalZ is the name of the developed application
that ran into separate window, and feeding point coordi-
nates into active form•Z application. Thus, two programs
– form•Z and FractalZ – ran simultaneously in some sort
resembling a chalkboard that records a single point in 3D
space for every coordinate FractalZ calculated.

At this point, we encountered serious problems. One
thing to note is the speed with which the calculations or
the input process was carried out. Using the method de-
scribed above, it takes 200 milliseconds for form•Z to
draw a single point and some 15 to 20 minutes to gener-

Figure 2: Fractal shape rendered by form•Z

2006-07 form•Z Joint Study Journal56

Figure 5: Artistic rendering of the mesh model.

Figure 4: Mesh-cloud converted from point-cloud.

ate a 3,000-point fractal model. Another thing to mention
is the amount of data that form•Z was able to handle.
With shapes consisting from 20,000 and more points, ap-
plication and computer crashes became more frequent. In
fact, it takes several million points to generate a smooth
fractal shape like seen in Quat. Our models, consisting
from several thousand points, do not look much like frac-
tals. Microscopic details very often are hidden at the lower
levels.

It should be explained in what way 2D fractals are dif-
ferent from 3D and why handling them is more diffi cult.
When the point is projected on a 2D plane, it is possible
to control the size of the resulting image by lowering the
resolution and adjusting its dimensions. That way, while
some fi ne fractal details will disappear, the overall picture
will remain. In case we want to go deeper, it is possible to
zoom into a specifi c part and calculate it. The same can-
not be done easily with the resulting points of 3D fractal
shapes. They consist of a collection of individual points, a
point-cloud that need to be visualized somehow. One way
is to replace each individual point with a 3D shape (an
analogy is voxel rendering), or drape the shape, creating
a NURBS surface. To simplify the work with the result-
ing model, data fi ltering was performed. Excluded from
the process of calculation were all those points that were
found “inside” the model and could not be seen from out-
side, thus leaving only the outer layer. This approach con-
siderably reduced the resulting model size and facilitated
its easier manipulation.

Rendering of the object was fi nalized using point-cloud
processing software Points2Polys from Paraforms (Fig-
ure 3) and Point Cloud (v.1.0) from Floating Point Solu-
tion. These applications connected the adjoining points,
forming poly-meshes from the input data material, while
Point Cloud is also capable of draping a point-cloud with
a 2D plane. To achieve this it was necessary to export

form•Z model into *.obj fi le format. Further visualization
was complicated. It was not possible to reach the level of
detail found in similar applications, for the simplest reason
that our hardware and software was not adequate to han-
dle the complex models consisting of several thousand
points. To truly appreciate the 3D fractals in all their glory it
would require many more iterations to be carried out on a
fi ner scale with the resulting models much more complex,
and much “heavier” (Figures 4-6). Similarly to a man in a
dark cavern poking at walls with a stick. we were able to
reproduce a part of that hidden, complex topology, while
most of the nooks and crannies remain hidden.

Figure 3: Fractal point-cloud in Points2Polys application.

57Bric-a-brac of Creative Computing: Studying Fractal Shapes with form•Z

The practical value of this work, as to our knowledge, is in
its similarity with the study of the modern theoretical phys-
ics[5]. On the forefront of contemporary cosmology is the
idea that our universe is just one of the many universes
that forms a far bigger cluster called “the multiverse”, or
“megaverse” as some scientists prefer to call it. String the-
ory describes particles as vibrating strings of energy – be-
cause strings vibrate at different levels of intensity – there
exist varieties of particles in our universe. The expansion
of the universe is fueled by the so-called “dark energy”, an
energy that represents the cosmologic constant (). Now,
the value of cosmologic constant is very important for our
existence. If its value had been different during and right
after the Big Bang, our universe would have ended up in a
completely different state. If the cosmologic constant were
lower than its present value, all the matter following the
gravitational pull would collapse onto itself. On the other
hand, if its value would have been greater, all of the matter
would be blown apart, the expansion of space would oc-
cur so fast that galaxies and stars would have no chance
of forming, and likewise, there would be no time for higher
intelligence to evolve.

While calculating the 3D shape generated by the equa-
tion, FractalZ application was looking for specifi c values
that would produce meaningful results. In case the results
of the equation converged to zero or infi nity, there would
be nothing. We did a listing of all the valid points on the
surface of that 4D shape.

The same can be applied to cosmology. Cosmologic
constant, which seems to be so fi ne-tuned to satisfy our
needs, could be completely different in some other uni-
verse of the multiverse thus making that other places un-
inhabitable. Scientists are busy constructing models of
multiverse, called “landscape”. Now “landscape” is a dif-
fi cult term. It is not something that exists in reality; rather,
it is a “map” or the model of possibilities for the “shape” of
the multiverse. Our universe, with our particular value of
the cosmologic constant is just one of the many possibili-
ties or points on the landscape.

What we did in our study was the mapping of the “habit-
able” places on a 4D shape, in the same way as physicists
today are trying to map the landscape of the multiverse.
To follow the analogy – cosmologic constant is our x, the
result of the equation, where c – the quaternion – repre-
sents the four fundamental forces in our universe (grav-
ity, electromagnet force, strong and weak nuclear forces).
Now, this was not an arbitrary choice: since each force has
messenger particles (gravitons, photons, gluons, W and Z
bosons) that can be described by string theory as being
the same vibrating string, it is possible to unify all of these
forces into one quaternion number, assuming that they
are permanent in their affect on the universe. That way,
the topology of the landscape, where the universal con-
stant changes and the four fundamental forces are locked
into a hyper-complex number, the only thing missing is
the equation itself, the formula that governs the shape of
the landscape, and consequently – the multiverse. The
four forces do not even have to have the same value; they
can change as well, affecting the value of the cosmologic
constant. It might seem a bit far-fetched, but linking these
two principles might produce a coherent picture.

A trivia, a curio, bric-a-brac of creative computing are
the words we would use to describe this study. The main
value comes in the form of expansion of conscience. We
achieved our goal – some very attractive visual master-
pieces are presented for your evaluation (Figures 7-9). No
conclusions have been formulated so far and the work on
the study is continuing. Too many things are still not clari-
fi ed yet. For some reason, certain quaternion values bring
no result at all, while others blossom in various forms and
shapes emerging from minor changes. New quaternion
values are tested and new methods of graphical repre-
sentation are under development.

A universe is an open-ended system. It exists in itself and
has no perceivable end – neither in time nor in space.
Mathematics, being an abstract plane of symbols and re-
lations, shares that same quality – there is no end to it.
Likewise, we would like to keep our project going on rath-
er than placing a full stop at the end of this sentence…

REFERENCES

[1] Three-dimensional fractals (quaternionic fractals).
http://www.physcip.uni-stuttgart.de/phy11733/index_e.html
[2] Tetrabot: The generalized Mandelbrot set.
http://www.3dfractals.com/
[3] William Rowan Hamilton (1805-1865).
http://en.wikipedia.org/wiki/William_Rowan_Hamilton.
[4] Macfarlane, Alexander (1906), “Vector analysis and quater-
nions”, 4th ed. 1st thousand. New York, J. Wiley & Sons; LCCN
es 16000048.
[5] Susskind, Leonard – “The Cosmic Landscape: String Theory
and the Illusion of Intelligent Design”; Little, Brown and Company
(December 12, 2005) ISBN-10: 0316155799.

Figure 6: Artistic rendering of the mesh model.

2006-07 form•Z Joint Study Journal58

Modris Dobelis is Professor and Head of Department of Computer Aided Engineering Graphics at the
Riga Technical University in Riga, Latvia. He teaches graduate and undergraduate students computer aided
architectural design. He has received a Certifi cate of Appreciation and AP600 Program Award from Westing-
house Electric Corp. in recognition of superior performance as a member of the AP600 Project working on 3D
modeling of piping and equipment (1994-1996), and Honorary Award from the Ministry of Science and Educa-
tion of Latvia about promotion of CAD ideas in education (2007). He is a president of International Baltic As-
sociation for Geometry and Engineering Graphics BALTGRAF. He strives to promote the Building Information
Modeling idea into architectural design process. Email: Modris.Dobelis@rtu.lv.

Figure 9: Rendering of point-clouds after processing by Point Cloud 1.0.

Figure 7: Rendering of point-clouds after
processing by Point Cloud 1.0.

Figure 8: Rendering of point-clouds
after processing by Point Cloud 1.0.

Dmitriy Averyanov is a bachelor
student of architecture at the Riga Tech-
nical University, Faculty of Architecture
and Urban Planning. He is a freelance
artist doing part-time jobs in several ar-
chitecture bureaus in Latvia, as well as
in Russia. He is mostly involved in urban
planning and renovation.

Vladimir Katz is a 4th-year student
of mathematics at the University of Lat-
via, Faculty of Physics and Mathemat-
ics. He is an assistant programmer at a
telecommunication company, Belam Inc.,
and a full-time fractal enthusiast.

