
2006-07 form•Z Joint Study Journal76

ABSTRACT:

Designing by generative synthesis systems (GSSs) can
maximize the quality of design solutions. Such a gain is
directly related to: A) the system-building process, which
entails: dismantling problems’ components, unpacking
embedded relationships, tracing dependencies, clarifying
design objectives, and critically acknowledging reasoning
mechanisms (subjective or objective); and B) the systems’
ability to generate alternative solutions (Heisserman,
1994), which offers the designer a chance to compare be-
tween possible candidates and select the “better” ones.
The capacity of such systems is best explored within a
computerized environment where automation is not only
possible, but also accelerated.

1. INTRODUCTION:

The idea of structuring design synthesis processes around
generative synthesis systems (GSSs) and design lan-
guages is not new. Expressions of such a concept can be
found in the works of: Vitruvius, Durand, Louis Sullivan, Le
Corbusier, Peter Eisenman, Alvaro Siza, among others.
This “movement” continued to evolve as the architectural
landscape witnessed the works of Christopher Alexan-
der, Lionel March, George Stiny and James Gips, William
Mitchell, Charles Eastman, Terry Knight, and Chris Yes-
sios, among many others.

Parallel to these works, was the continuous fl ow of com-
putational technologies (mainly programming and CAD)
into the fi eld of architecture. This fueled the process of
building generative synthesis systems as designers
gained access to independent programming languages
such as: C, C++, Java, Visual Basic, etc; and CAD-hosted
ones such as: Auto-LISP (AutoCAD), MEL (Maya Embed-
ded Language), RVB (Rhino-Script), Max-script (3D Max),
FSL (form•Z Scripting Language), among others. As a re-
sult, a “new” type of synthesis systems started to take its
shape through automation.

Krishnamurti described the architectural design process
as a function of knowledge and strategy (2006). The
deeper the knowledge is, the more informed our design
decisions become. And the richer a strategy is, the more
alternatives a design process generates. Knowledge and
strategy drive the quality and magnitude of alternatives
generated by GSSs. In Algebraic terms, these alternatives
resemble vectors that span a space of solutions. Solu-
tion spaces are system-specifi c. Their defi nition depends
on the components used to build their generating GSSs.
Thus, there are no generic metrics to measure or evaluate
their characteristics. However, the fertility of GSSs (how
generative they are) is mirrored in the capacity of embed-
ded design rules.

Rules are expressions composed of a left side, an opera-
tor and a right side. In algebra, rules can be written as
functions like (A(X)-->Y), or equations like (X=2+Y). The
fi rst maps (transforms) element X into element Y through
a function A, and the second assigns the value of 2+Y to
element X. The fi rst type can be also viewed as replace-
ment rules, and the second as associative rules. Replace-
ment rules erase input, and place output. In this regard,
(A(X)-->Y) is interpreted as: replace element X by element
Y through rule A. Associative rules establish associations
between both sides. In this regard, (X=2+Y) is interpreted
as an association between element X and 2+Y. Associa-
tions are of two types, mono-directional and bi-directional.
Mono-directional associations enforce a “Parent-Children
type” of relationships where a hierarchy drives the fl ow of
data from top to bottom only. Thus, manipulating “Parents”
propagates to “Children”, but not vice-versa. Bi-directional
associations allow data to fl ow in both directions.

Rules manipulate elements through their representation.
Elements’ representation is system-specifi c. For example,
in a Cellular Automata (CA) system (Wolfram, 2002), el-
ements are expressed as cells, usually arranged in or-
thogonal grids. Figure 1 illustrates how CA rules work in
general.

by Maher El-Khaldi.

in Architectural Design

Generative Synthesis
AUTOMATED

SYSTEMS

GEORGIA INSTITUTE OF TECHNOLOGY
ATLANTA, GEORGIA

77Automated Generative Synthesis Systems in Architectural Design

Figure 2: A Shape Grammar rule that translates the initial shape
(left side) and creates a copy.

Figure 4: Twenty (of many other) alternative villa designs gener-
ated by the grammar. (Mitchell, 1989).

N
ei

g
h

b
o

r t
o

 C
h

ec
k

N
ei

g
h

b
o

r t
o

 C
h

ec
k

C
el

l t
o

 R
ep

la
ce

Replacing Cell

Rule ApplicationRule Structure

Change Self

Change Other

Replacement rules

Time Step 0

Change Other

Initial State

Time Step 1

Time Step 2

Time Step 3

Time Step 4

Continuous Boundary

Figure 1: The application and mechanism of applying Cellular Automata rules.

In Shape Grammars, elements are expressed in shapes
with labels, axes, and notations. Figure 2 is an example of
shape grammars rules.

Where in L-systems (Lindenmayer & Prusinkiewicz,
1990), elements are presented as strings of characters
(Axioms) as shown below in Figure 3. L-systems Axioms
are usually used to represent (package) geometric data,
growth directions, or nested strings of data.

L->RL
MR -> G

Figure 3: L-system replacement rules. The fi rst rule replaces “L”
by “RL”, where the second replaces “MR” by “G”.

When building GSS, designers may choose to combine,
edit, or even invent new representations for the design
elements within a system.

One might argue that design processes cannot be ap-
proached holistically as a set of algebraic “left and right”
rules because they do not accommodate for the design-
ers instantaneous intuition. A distinction should be made
to clarify the context in which design is best produced by
rules.

Architects usually build methodologies for solving different
types of problems to develop prototypical solutions. One
of the most famous published works in this area is Chris-
topher Alexander’s “Pattern Language”. In his book, he
breaks down different design contexts of different scales
to a number of objectives and requirements, and ways
to provide possible solutions. More familiar examples on

prescribed, “off the shelf” type of solutions can be found
in the Architectural Graphic Standards books where ex-
tensive solutions and rules can be found for almost any
architectural design concern.

In the light of this discussion, design rules can be articu-
lated in different ways such as: if site context (X) is true,
then build a fence (Y); or drive the numeric value of slope
(A) by the ratio B/C, or the position of stairs (M) is always
perpendicular to walls (B); etc. Design rules are processes
devised to offer solutions under specifi ed conditions.

Prototypical solutions are not to be mistaken for systems.
They only present the right side (output) of design rules.
Generative systems are structures capable of processing
input and generating output through utilizing design rules.
One of the most famous examples on generative synthe-
sis systems is the “Palladian Grammars” that Stiny and
Mitchell (1978) built using a Shape Grammars. Figure 4
below shows a number of alternative solutions generated
by the system. The grammar was designed to reproduce
alternative solutions for an extracted design language
from the works of Palladio.

2006-07 form•Z Joint Study Journal78

Generative synthesis systems are advantageous (and ap-
plicable) to the design process if and only if the designer
was able to defi ne: A) clear defi nition of design objectives;
B) a design language through which these objectives are
to be expressed (Yessios, 1975), which is necessary to
bound the scope of system building; C) and a formalism
to describe the generation process (expression of ob-
jectives). Design objectives are expected gains from a
certain design schema. Design languages are material
expression of design objectives. Design formalisms are
combinations of design rules and representations. Rules
are built or extracted in relation to both the design context
and the design language being implemented. Rules ma-
nipulate design elements (units) through their represen-
tation. A design element can be represented in various
ways in relation to different contexts. Each representation
method highlights certain aspects of the design elements.
Hence, rules are functions that manipulate units through
an interface defi ned by representation. In that sense, Pal-
ladian Grammars is a generative system for synthesiz-
ing alternative designs of Palladian Villas through Shape
Grammar, a formalism that manipulates units via a repre-
sentation of drawn shapes.

In Siza’s work, one can notice consistent methodologies
for form derivations such as site lines, geometric propor-
tions, use of materials, compositions of volumes, relation-
ships between solids and voids, etc. The richness, clarity
and consistency of Siza’s work made it possible for Duarte
(2005) to automate the generation process of Malagueira
houses as shown in Figure 5.

2. PROJECTS:

The following two projects illustrate a different design
scope, buildings’ skins (A more common implementation
of generative systems to the architectural practice nowa-
days). The fi rst project, Smart_Component_01, shows an
adaptive assembly of fl at panels built with standard joints.
It presents a design instance, a singularity or rather a
building brick that can be used repeatedly to produce a
mechanically adaptive skin. The project was realized by

two environments: CATIA and form•Z. The former pro-
vided a parametric environment allowing for building nu-
meric and geometric rules (relationships), where the sec-
ond provided a partially parametric environment offering
a more transparent modeling experience and allowing for
faster conceptual studies of initial design confi gurations.
The second project, Panels_Optimizer_01, offers a panel-
ing methodology for complexly curved surfaces. It shows
a top-down approach for fi nding design solutions through
iterative loops of construct-and-improve algorithms. This
project was realized by two environments as well: Rhino
and form•Z. The former was used to automate design
rules through the offered scripting language (RhinoScript)
where the latter provided extensive tools for conceptual
digital modeling and 3D-printing purposes.

2.1 SMART_COMPONENT_01:

The initial design objective was to create a surface with
various levels of transparency driven by its curvature. This
transition was approached as different degrees of porosity.
Throughout the early experiments with digital and physical
models, the design concept evolved from a holistic view of
a surface to a singular view of a component. The design
strategy was to create one smart component capable of
confi guring itself to a range of different conditions, namely
surface degrees of curvature. While the component was
designed to deliver various adaptation modes, it main-
tained the fl atness of its geometric elements by utilizing
a number of strategically placed joints. The robust system
of joints helped avoid shearing, bending, and stretching.
It also allowed for using only two types of panels, which
facilitates easy assembly. Two possible solutions were de-
veloped using the same number of joints and panels, but
confi gured differently. Based on the quality of the required
adaptation, the second confi guration was selected as a
fi nal solution. This was due to the fact that it had a fewer
number of degrees of freedom, thus a better-controlled
behavior in comparison to the fi rst one.

The initial studies of design confi gurations were achieved
through utilizing form•Z. The richness of its environment
allowed for fast construction of digital representations, and
translation to different fi le formats to communicate with
fabrication equipments. After the exploration of different
design ideas through form•Z, a GSS was built within CA-
TIA by embedding numeric and geometric rules (relation-
ships). The generative synthesis system was composed
of four sub-systems: “Controlling geometry” responsible
for driving the assembly of components; “Responsive ge-
ometry” responsible for mapping the changes in the previ-
ous sub-system onto a hexagonal point-grid; “Mediating
geometry” responsible for translating changes in the pre-
vious system to the “Adaptive geometry”. Figures 6, 7 and
8 show initial studies of joints, GSS structure, and popula-
tion of the selected confi guration.

Figure 5: Alternatives of Siza’s design by Duarte’s Malagueira
automated grammars (2005).

79Automated Generative Synthesis Systems in Architectural Design

Analog Simulation Digital Simulation Final Result

Solution 1 Solution 2

Analysis of degrees of freedom

Figure 8: Showing a developed physical model; two designed confi gurations; a strip of
“Solution-2” adapting to a deforming surface; and fi nally 1,000 components populated
within a space defi ned by a curved surface.

NURBS

Points

Surface

Intersection
Points

IsoParms

Centroids

Constraining
Surfaces

Vectors

Controlling Geometry Responsive Geometry Mediating Geometry Adaptive Geometry

Configuration 1

Configuration 1

Design System

Figure 6: Initial studies of joints.

Figure 7: Structure of the GSS showing different nested layers
within each sub-system.

2.2 PANELS_OPTIMIZER_01:

In the second project, the design
objective was to devise a generic
subdivision methodology for com-
plexly curved surfaces. Initial stud-
ies of subdivision methods were
achieved in form•Z. Its powerful
engine provides a state-of-the-
art solid modeling tools making it
a perfect design environment for
generating physical mockups via
3D printers. This helped defi ne a
design language and extract a set
of design rules in a timely man-
ner. After defi ning a language, the
GSS was built in RhinoScript as a
recursive algorithm. A main system
component, Moderator, dictates
the solution generation process
(rule implementation) and selec-
tion (recognition) of elements.

2006-07 form•Z Joint Study Journal80

Maher El-Khaldi is a researcher at Georgia Institute of Technology pursuing a PhD in Design Computing. He received a Master
of Science in Design and Computation (2007) from the Massachusetts Institute of Technology, and a Bachelor of Architecture (2004)
from the American University of Sharjah, United Arab Emirates (UAE). Maher is the director of design computing division at Shape
Architecture Practice + Research, UAE. Email:maher@shape-arc.com.

Figure 9: Left: showing a surface sub-division with different thicknesses based on each
panel’s curvature. Right: Showing the structure of the generative synthesis system for
Panel_Optimizer_1.0.

Evaluator

Lo
op

Moderator

Patch Maker

Patch Selector

Shell Maker Patch Curvature Optimizer

Design System

There were two major goals: achieving speed in assem-
bly (evaluated by the number of panels); and attaining
the smoothest appearance (evaluated by the minimum
size of panels). The trade off between these two drivers
demonstrates a very simple, but true model of the archi-
tectural design process where confl icting demands have
to be resolved. For example, the more panels there are,
the slower the construction process becomes, but also the
smaller the panels are and the smoother the fi nal shape
is. In contrast, the fewer number of panels, the faster the
construction process becomes, but also, the bigger the
panels are, the more angular the fi nal shape is. To resolve
this confl ict, two other parameters were introduced: pan-
el-curvature and style. Curvature suggests the integration
of cost-related variables where fl atness is desired. Style
empowers aesthetic judgment to guide the generation
process. In this case, the style chosen was fractal-pat-
terns, which were generated by subdividing the diagonal
panels. The design strategy was to recursively sub-divide
and rebuild optimized panels until a stopping condition is
achieved. In this case: A) an acceptable panel curvature,
or B) a minimum panel size. The number of panels was
driven by these two parameters, while the fractal pat-
tern was generated by the embedded sub-division rules.

Finally, each panel was given a thickness based on its
curvature as a suggestion of material properties. Figure 9
shows the structure of the implemented GSS and a solu-
tion for a curved surface.

3. CONCLUSIONS

Generative synthesis systems require clear descriptions
of the architectural languages being explored. Once a
language is defi ned, it becomes possible to extract rules
and formalize generation processes. Generative design
processes offer a larger number of synthesized alterna-
tives in comparison to the classical design processes.
Building design synthesis systems urges the designer
to understand their intuition, dismantle design problems,
defi ne design objectives critically, acknowledge decision
drivers whether subjective or objective, and outline solu-
tion spaces rich of alternatives.

REFERENCES

Duarte, J. (2005). Towards the
mass customization of housing:
the grammar of Siza’s houses
at Malagueira. Environment and
Planning B: Planning and Design
32(3), 347 – 380
Heisserman, J. (1994, March/
April). Generative Geometric De-
sign. IEEE Computer Graphics
and Applications, 14(2), 37-45.
Krishnamurti, R. (2006). Explicit
design space? Artifi cial Intel-
ligence for Engineering Design,
Analysis and Manufacturing, 20,
95–103.
Lindenmayer, A. , Prusinkiewicz,
P. (1990). The Algorithmic Beauty
of Plants. New York: Springer-Ver-
lag.
Stiny, G. , Mitchell, W. (1978). The
Palladian Grammar. Environment
and Planning B: Planning and De-
sign. 5, 5-18.
Mitchell, W. (1989). The logic of
architecture. Cambridge: The MIT
Press.
Wolfram, S. (2002). A New Kind
of Science. Champaign: Wolfram
Media Inc.
Yessios, C.I. (1975). Formal Lan-
guages for Site Planning. In C.
Eastman. (Ed.), Spatial Synthesis
in Computer-Aided Buildings De-
sign. New York: Wiley.

