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ABSTRACT:

Designing by generative synthesis systems (GSSs) can 
maximize the quality of design solutions. Such a gain is 
directly related to: A) the system-building process, which 
entails: dismantling problems’ components, unpacking 
embedded relationships, tracing dependencies, clarifying 
design objectives, and critically acknowledging reasoning 
mechanisms (subjective or objective); and B) the systems’ 
ability to generate alternative solutions (Heisserman, 
1994), which offers the designer a chance to compare be-
tween possible candidates and select the “better” ones. 
The capacity of such systems is best explored within a 
computerized environment where automation is not only 
possible, but also accelerated.

1. INTRODUCTION:

The idea of structuring design synthesis processes around 
generative synthesis systems (GSSs) and design lan-
guages is not new. Expressions of such a concept can be 
found in the works of: Vitruvius, Durand, Louis Sullivan, Le 
Corbusier, Peter Eisenman, Alvaro Siza, among others. 
This “movement” continued to evolve as the architectural 
landscape witnessed the works of Christopher Alexan-
der, Lionel March, George Stiny and James Gips, William 
Mitchell, Charles Eastman, Terry Knight, and Chris Yes-
sios, among many others.

Parallel to these works, was the continuous fl ow of com-
putational technologies (mainly programming and CAD) 
into the fi eld of architecture. This fueled the process of 
building generative synthesis systems as designers 
gained access to independent programming languages 
such as: C, C++, Java, Visual Basic, etc; and CAD-hosted 
ones such as: Auto-LISP (AutoCAD), MEL (Maya Embed-
ded Language), RVB (Rhino-Script), Max-script (3D Max), 
FSL (form•Z Scripting Language), among others. As a re-
sult, a “new” type of synthesis systems started to take its 
shape through automation. 

Krishnamurti described the architectural design process 
as a function of knowledge and strategy (2006). The 
deeper the knowledge is, the more informed our design 
decisions become. And the richer a strategy is, the more 
alternatives a design process generates. Knowledge and 
strategy drive the quality and magnitude of alternatives 
generated by GSSs. In Algebraic terms, these alternatives 
resemble vectors that span a space of solutions. Solu-
tion spaces are system-specifi c. Their defi nition depends 
on the components used to build their generating GSSs. 
Thus, there are no generic metrics to measure or evaluate 
their characteristics. However, the fertility of GSSs (how 
generative they are) is mirrored in the capacity of embed-
ded design rules.

Rules are expressions composed of a left side, an opera-
tor and a right side. In algebra, rules can be written as 
functions like (A(X)-->Y), or equations like (X=2+Y). The 
fi rst maps (transforms) element X into element Y through 
a function A, and the second assigns the value of 2+Y to 
element X. The fi rst type can be also viewed as replace-
ment rules, and the second as associative rules. Replace-
ment rules erase input, and place output. In this regard, 
(A(X)-->Y) is interpreted as: replace element X by element 
Y through rule A. Associative rules establish associations 
between both sides. In this regard, (X=2+Y) is interpreted 
as an association between element X and 2+Y. Associa-
tions are of two types, mono-directional and bi-directional. 
Mono-directional associations enforce a “Parent-Children 
type” of relationships where a hierarchy drives the fl ow of 
data from top to bottom only. Thus, manipulating “Parents” 
propagates to “Children”, but not vice-versa. Bi-directional 
associations allow data to fl ow in both directions.

Rules manipulate elements through their representation. 
Elements’ representation is system-specifi c. For example, 
in a Cellular Automata (CA) system (Wolfram, 2002), el-
ements are expressed as cells, usually arranged in or-
thogonal grids. Figure 1 illustrates how CA rules work in 
general.
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Figure 2: A Shape Grammar rule that translates the initial shape 
(left side) and creates a copy.

Figure 4: Twenty (of many other) alternative villa designs gener-
ated by the grammar. (Mitchell, 1989).
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Figure 1: The application and mechanism of applying Cellular Automata rules.

In Shape Grammars, elements are expressed in shapes 
with labels, axes, and notations. Figure 2 is an example of 
shape grammars rules.

Where in L-systems (Lindenmayer & Prusinkiewicz, 
1990), elements are presented as strings of characters 
(Axioms) as shown below in Figure 3. L-systems Axioms 
are usually used to represent (package) geometric data, 
growth directions, or nested strings of data.

L->RL
MR -> G

Figure 3: L-system replacement rules. The fi rst rule replaces “L” 
by “RL”, where the second replaces “MR” by “G”.

When building GSS, designers may choose to combine, 
edit, or even invent new representations for the design 
elements within a system.

One might argue that design processes cannot be ap-
proached holistically as a set of algebraic “left and right” 
rules because they do not accommodate for the design-
ers instantaneous intuition. A distinction should be made 
to clarify the context in which design is best produced by 
rules. 

Architects usually build methodologies for solving different 
types of problems to develop prototypical solutions. One 
of the most famous published works in this area is Chris-
topher Alexander’s “Pattern Language”. In his book, he 
breaks down different design contexts of different scales 
to a number of objectives and requirements, and ways 
to provide possible solutions. More familiar examples on 

prescribed, “off the shelf” type of solutions can be found 
in the Architectural Graphic Standards books where ex-
tensive solutions and rules can be found for almost any 
architectural design concern. 

In the light of this discussion, design rules can be articu-
lated in different ways such as: if site context (X) is true, 
then build a fence (Y); or drive the numeric value of slope 
(A) by the ratio B/C, or the position of stairs (M) is always 
perpendicular to walls (B); etc. Design rules are processes 
devised to offer solutions under specifi ed conditions. 

Prototypical solutions are not to be mistaken for systems. 
They only present the right side (output) of design rules. 
Generative systems are structures capable of processing 
input and generating output through utilizing design rules. 
One of the most famous examples on generative synthe-
sis systems is the “Palladian Grammars” that Stiny and 
Mitchell (1978) built using a Shape Grammars. Figure 4 
below shows a number of alternative solutions generated 
by the system. The grammar was designed to reproduce 
alternative solutions for an extracted design language 
from the works of Palladio.
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Generative synthesis systems are advantageous (and ap-
plicable) to the design process if and only if the designer 
was able to defi ne: A) clear defi nition of design objectives; 
B) a design language through which these objectives are 
to be expressed (Yessios, 1975), which is necessary to 
bound the scope of system building; C) and a formalism 
to describe the generation process (expression of ob-
jectives). Design objectives are expected gains from a 
certain design schema. Design languages are material 
expression of design objectives. Design formalisms are 
combinations of design rules and representations. Rules 
are built or extracted in relation to both the design context 
and the design language being implemented. Rules ma-
nipulate design elements (units) through their represen-
tation. A design element can be represented in various 
ways in relation to different contexts. Each representation 
method highlights certain aspects of the design elements. 
Hence, rules are functions that manipulate units through 
an interface defi ned by representation. In that sense, Pal-
ladian Grammars is a generative system for synthesiz-
ing alternative designs of Palladian Villas through Shape 
Grammar, a formalism that manipulates units via a repre-
sentation of drawn shapes.

In Siza’s work, one can notice consistent methodologies 
for form derivations such as site lines, geometric propor-
tions, use of materials, compositions of volumes, relation-
ships between solids and voids, etc. The richness, clarity 
and consistency of Siza’s work made it possible for Duarte 
(2005) to automate the generation process of Malagueira 
houses as shown in Figure 5. 

2. PROJECTS:

The following two projects illustrate a different design 
scope, buildings’ skins (A more common implementation 
of generative systems to the architectural practice nowa-
days). The fi rst project, Smart_Component_01, shows an 
adaptive assembly of fl at panels built with standard joints. 
It presents a design instance, a singularity or rather a 
building brick that can be used repeatedly to produce a 
mechanically adaptive skin. The project was realized by 

two environments: CATIA and form•Z. The former pro-
vided a parametric environment allowing for building nu-
meric and geometric rules (relationships), where the sec-
ond provided a partially parametric environment offering 
a more transparent modeling experience and allowing for 
faster conceptual studies of initial design confi gurations. 
The second project, Panels_Optimizer_01, offers a panel-
ing methodology for complexly curved surfaces. It shows 
a top-down approach for fi nding design solutions through 
iterative loops of construct-and-improve algorithms. This 
project was realized by two environments as well: Rhino 
and form•Z. The former was used to automate design 
rules through the offered scripting language (RhinoScript) 
where the latter provided extensive tools for conceptual 
digital modeling and 3D-printing purposes.

2.1 SMART_COMPONENT_01:

The initial design objective was to create a surface with 
various levels of transparency driven by its curvature. This 
transition was approached as different degrees of porosity. 
Throughout the early experiments with digital and physical 
models, the design concept evolved from a holistic view of 
a surface to a singular view of a component. The design 
strategy was to create one smart component capable of 
confi guring itself to a range of different conditions, namely 
surface degrees of curvature. While the component was 
designed to deliver various adaptation modes, it main-
tained the fl atness of its geometric elements by utilizing 
a number of strategically placed joints. The robust system 
of joints helped avoid shearing, bending, and stretching. 
It also allowed for using only two types of panels, which 
facilitates easy assembly. Two possible solutions were de-
veloped using the same number of joints and panels, but 
confi gured differently. Based on the quality of the required 
adaptation, the second confi guration was selected as a 
fi nal solution. This was due to the fact that it had a fewer 
number of degrees of freedom, thus a better-controlled 
behavior in comparison to the fi rst one.

The initial studies of design confi gurations were achieved 
through utilizing form•Z. The richness of its environment 
allowed for fast construction of digital representations, and 
translation to different fi le formats to communicate with 
fabrication equipments. After the exploration of different 
design ideas through form•Z, a GSS was built within CA-
TIA by embedding numeric and geometric rules (relation-
ships). The generative synthesis system was composed 
of four sub-systems: “Controlling geometry” responsible 
for driving the assembly of components; “Responsive ge-
ometry” responsible for mapping the changes in the previ-
ous sub-system onto a hexagonal point-grid; “Mediating 
geometry” responsible for translating changes in the pre-
vious system to the “Adaptive geometry”. Figures 6, 7 and 
8 show initial studies of joints, GSS structure, and popula-
tion of the selected confi guration.  

Figure 5: Alternatives of Siza’s design by Duarte’s Malagueira 
automated grammars (2005).
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Figure 8: Showing a developed physical model; two designed confi gurations; a strip of 
“Solution-2” adapting to a deforming surface; and fi nally 1,000 components populated 
within a space defi ned by a curved surface.
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Figure 6: Initial studies of joints.

Figure 7: Structure of the GSS showing different nested layers 
within each sub-system. 

2.2 PANELS_OPTIMIZER_01:

In the second project, the design 
objective was to devise a generic 
subdivision methodology for com-
plexly curved surfaces. Initial stud-
ies of subdivision methods were 
achieved in form•Z. Its powerful 
engine provides a state-of-the-
art solid modeling tools making it 
a perfect design environment for 
generating physical mockups via 
3D printers. This helped defi ne a 
design language and extract a set 
of design rules in a timely man-
ner. After defi ning a language, the 
GSS was built in RhinoScript as a 
recursive algorithm. A main system 
component, Moderator, dictates 
the solution generation process 
(rule implementation) and selec-
tion (recognition) of elements. 
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Figure 9: Left: showing a surface sub-division with different thicknesses based on each 
panel’s curvature. Right: Showing the structure of the generative synthesis system for 
Panel_Optimizer_1.0.
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There were two major goals: achieving speed in assem-
bly (evaluated by the number of panels); and attaining 
the smoothest appearance (evaluated by the minimum 
size of panels). The trade off between these two drivers 
demonstrates a very simple, but true model of the archi-
tectural design process where confl icting demands have 
to be resolved. For example, the more panels there are, 
the slower the construction process becomes, but also the 
smaller the panels are and the smoother the fi nal shape 
is. In contrast, the fewer number of panels, the faster the 
construction process becomes, but also, the bigger the 
panels are, the more angular the fi nal shape is. To resolve 
this confl ict, two other parameters were introduced: pan-
el-curvature and style. Curvature suggests the integration 
of cost-related variables where fl atness is desired. Style 
empowers aesthetic judgment to guide the generation 
process. In this case, the style chosen was fractal-pat-
terns, which were generated by subdividing the diagonal 
panels. The design strategy was to recursively sub-divide 
and rebuild optimized panels until a stopping condition is 
achieved. In this case: A) an acceptable panel curvature, 
or B) a minimum panel size. The number of panels was 
driven by these two parameters, while the fractal pat-
tern was generated by the embedded sub-division rules. 

Finally, each panel was given a thickness based on its 
curvature as a suggestion of material properties. Figure 9 
shows the structure of the implemented GSS and a solu-
tion for a curved surface. 

3. CONCLUSIONS

Generative synthesis systems require clear descriptions 
of the architectural languages being explored. Once a 
language is defi ned, it becomes possible to extract rules 
and formalize generation processes. Generative design 
processes offer a larger number of synthesized alterna-
tives in comparison to the classical design processes. 
Building design synthesis systems urges the designer 
to understand their intuition, dismantle design problems, 
defi ne design objectives critically, acknowledge decision 
drivers whether subjective or objective, and outline  solu-
tion spaces rich of alternatives.
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