
TOOL-MAKERS VS. TOOL-USERS (OR BOTH)?
77

There is a fundamental difference
between algorithmic and CAD-
related (or inspired) design.

The difference is not only technical,
representational, or graphical but also
scientifi c, rational, methodological, and
as such, intellectual. Algorithmic design
employs an abstract symbolic language
for representing ideas, concepts,
and processes to be manipulated by
a computer. It is a way of thinking,
whose power is derived not only by
the articulation of thoughts within the
human mind but also, most importantly,
by the extension of those thoughts using
computational devices. In contrast, CAD
related design is a graphical manipulation
of predetermined elements or processes
given to the designer as tools but whose
potential capabilities have already been
set in advanced. Every time a CAD
programmer creates a new tool to be

added to the palette, the programmer
predetermines what the designer may
need. This process involves at least two
paradoxes: fi rst, the intellectual effort
to conceive, picture, and determine
the use of a tool, involves by defi nition
decisions, opinions, and predispositions
that set limits to its use by others. The
imagination of a particular person has
its unique limitations confi ned however
only for that person, not necessarily for
others. Second, while the programmer
is able to provide those tools that are
believed to be needed, at the same time
the programmer is unable to provide
the means to create the tools that are
not believed by the programmers to be
needed (but may be) by the designer.

Algorithmic design involves symbolic
languages and as such provides the
means to create anything whether

Figure 1. A housing arrangement for 200 units is constructed using a scripted algorithm based on cellular automata theory.
While the fi nal form of the arrangement was unpredictable, the programmatic requirements were predicted to be satisfi ed

needed now, or not yet. CAD is about
the pre-established needs of a designer
who should act in a certain conventional
way of thinking. William Mitchell argued
that “architects tend to draw what they
can build, and build what they can
draw.” Using CAD tools involves by
necessity a Whorfi an effect in which the
designer is bounded to the potentiality of
the new tools, who, in turn, bound the
mind of the designer to think in a certain
way in order to take full advantage of
those tools. This unfortunate circular
situation can only be eliminated when
the designer and the CAD programmer
are one and the same person. Then,
the mind that designs is also the one
that invents the tools that allows the
mind to exceed its own thoughts. A tool
is not only an instrument that is used in
the performance of an operation whose
purpose is known, but also a vehicle

Harvard School of Design
Cambridge, Massachusetts

by Kostas Terzidis

Tool-Makers
(or both)? vs Tool-Users

 Terzidis Harvard_N.indd 77 4/26/07 4:35:12 PM

form•Z | JOINT STUDY REPORT | 2005-2006
78

Figure 2. A building confi guration constructed gradually using
a scripted algorithm.

to help conceive operations or ideas
that are not known in advance. The
difference between a conventional and
a computational tool is in the intellectual
nature of the latter. Computation as a
process is similar to the way the human
mind works, and while it may not have
intention or purpose it does perform in a
similar manner.

The dominant mode for using computers
in design today is a combination of
manually driven design decisions
and formally responsive computer
applications. The problem with this
combination is that neither the designer
is aware of the possibilities that
computational schemes can produce
nor the software packages are able to
predict the moves, idiosyncrasies, or
personality of every designer. Therefore,
the result is a distancing between the
potential design explorations and the
capacity built into computational tools.
Designers often miss the opportunity
opened up to them through digital tools,
merely because of lack of understanding
that computation can be part of the
design process as well. While some
digital designers are claiming to be great
fans, users, or explorers of digital design,
a lack of knowledge on what really
constitutes digital design contributes
toward a general misunderstanding; the
use of computer applications is not per
se an act of digital design.

Digital, in the true sense of the meaning,
is about the reduction of a process into
discrete patterns and the articulation
of these patterns into new entities
to be used by a computer. Digital
is an achievement of the collective
organizational properties of computers
not the intrinsic nature of the appearance
of their products. In other words, digital
is a process not a product. If it is seen as
a process, then the emphasis is placed
on understanding, distinguishing, and
discerning the means by which design
can enter the world of computation, and
not the other way around. The world of
computational design is quite different
from the manual world of design. Terms,
concepts, and processes that are seen
as inconceivable, unpredictable, or
simply impossible by a human designer
can be explored, implemented, and
developed into entirely new design
strategies within the digital world.
Instead, what is happening is the use of
computers as marketing tools of strange
forms whose origin, process, or rationale

of generation is entirely unknown and
so they are judged on the basis of their
appearance often utilizing mystic, cryptic,
or obfuscating texts for explanation.

The problem with algorithmic logic in
design is that fi xed interrelationships
between numbers and concepts appear
to some designers as too deterministic. In
fact, many designers are not interested in
the mathematics of a design composition
but rather in the composition itself. While
this position may be interpreted as a
defense mechanism against the possible
rationalization of design, yet it becomes
also an obstacle in exploring the limits
of a possible rationalization of design.

Computer systems that are referred
to as CAD systems are in essence
collections of algorithms each of which
addresses a specifi c graphical design
issue. A user of a CAD system, i.e. a
designer, makes use of these algorithms
without knowledge of how they work and
consequently is unable to determine the
full value of their potential. While CAD
systems helped designers signifi cantly
to organize, speed up, or communicate
ideas using high-level commands, only
a few CAD systems offer the means to
combine those commands algorithmically
(i.e. scripting, API, or open-source) in
ways that would allow one to explore
“out of the box” possibilities or to break

 Terzidis Harvard_N.indd 78 4/26/07 4:35:13 PM

TOOL-MAKERS VS. TOOL-USERS (OR BOTH)?
79

down the commands in ways that would
allow one to explore what is “under the
hood”. Further, very few designers
have the knowledge to understand the
computational mechanisms involved
in a CAD system, or, reversely, very
few CAD developers are also equally
accomplished designers.

Both non-users and users agree that
the effect computers will have on
design whether desirable or not will be
signifi cant, profound, and far-reaching.
This agreement is based on an important
yet peculiar relationship between design
and its tools. It is apparent that design
is strongly depended on the tools utilized
and, reversely, tools have a profound
effect in design. Traditionally, this
dependency is controlled by the human
designer who decides which tool is to

Kostas Terzidis is an Associate Professor at the Harvard Graduate School of Design. His current GSD courses
are Kinetic Architecture, Algorithmic Architecture, Digital Media, Advanced Studies in Architectural Computing, and Design
Research Methods. He holds a PhD in Architecture from the University of Michigan (1994), a Masters of Architecture from The
Ohio State University (1989) and a Diploma of Engineering from the Aristotelion University in Greece (1986). He is a registered
architect in Europe where he has designed and built several commercial and residential buildings. His most recent work is in
the development of theories and techniques for algorithmic architecture. His book Expressive Form: A Conceptual Approach to
Computational Design published by London-based Spon Press (2003) offers a unique perspective on the use of computation
as it relates to aesthetics, specifi cally in architecture and design. His latest book Algorithmic Architecture, (Architectural Press/
Elsevier, 2006), provides an ontological investigation into the terms, concepts, and processes of algorithmic architecture and
provides a theoretical framework for design implementations.

be used when and where as well as
the range of possibilities a tool has for
addressing, resolving, or accomplishing
a design task. Further, it is possible that
the use of tools may also have further
implications in the process of addressing
a task: just because a tool is available,
a task is now possible, or, further, a tool
implies a task. However, a problem
arises when the tool is not entirely under
control of its user. In the case of a
computer as a tool, the results may be
unexpected, surprising, or unpredictable
even by the users themselves. While
such moments of surprise may be
advantageous, enlightening, or perhaps
even undesirable, they do exhibit
a theoretical interest because they
challenge the basic premise of what
a tool is or how a tool should behave.
Further, such behavior may lead to

alternative ways of executing the task
that were not intended and may lead to
results often superior than intended.

Traditionally, the dominant paradigm
for discussing and producing design
has been that of human intuition and
ingenuity. For the fi rst time perhaps, a
paradigm shift is being formulated that
outweighs previous ones. Algorithmic
design employs methods and devices
that have practically no precedent. If
design is to embark into the alien world
of algorithmic form, its design methods
should also incorporate computational
processes. If there is a form beyond
comprehension it will lie within the
algorithmic domain. While human
intuition and ingenuity may be the
starting point, the computational and
combinatorial capabilities of computers
must also be integrated.

Figure 3. A library constructed using a scripted algorithm based on stochastic search. The phases of construction
reveal a progressive evolution of form based on iteratively satisfying the program’s spatial and relational constraints.

 Terzidis Harvard_N.indd 79 4/26/07 4:35:15 PM

